Instrumentation Formulas

For use with the following assessments:

- Instrumentation Fitter
- Instrumentation Technician
- Industrial Maintenance Electrical & Instrumentation Technician

Power Formulas

Resistance Formulas

$$TR = R1 + R2 + R3...$$

$$TR = \frac{1}{(1/R1) + (1/R2) + (1/R3)}$$

Temperature Formulas

$$^{\circ}$$
C = $^{5}/_{9}$ ($^{\circ}$ F - 32)
 $^{\circ}$ F = (1.8 x $^{\circ}$ C) + 32

Pressure Formulas

"H20 = PSI x 27.68

PSIA = PSIG + 14.7 PSI

Absolute vacuum pressure = Barometric pressure - vacuum gauge reading

Updated: 11/16/23

Electrical Formulas

General Formulas

The following formula wheel can be used for all direct current circuits and alternating current circuits with unity power factor.

Voltage Drop Formulas

Voltage Drop
$$(1\varnothing) = \underline{2 \times L \times K \times I}$$

CM

Voltage Drop
$$(3\varnothing) = \frac{1.732 \times L \times K \times I}{CM}$$

K = direct current resistance for a 1,000 circular mil conductor 1,000 feet long operating at 75°C

K = 12.9 ohms for copper
K = 21.2 ohms for aluminum
(From NEC - Chapter 9, Table 8)

L = One way length of circuit in feet I = Current in conductor in amperes

Voltage Drop $(1\emptyset) = R \times I$ R = Resistance of both conductors

Voltage Drop $(3\emptyset)$ = R x I x 1.732 R = Resistance of one conductor

$$V_L = V$$
 Line = Source Voltage $V_P = V$ Phase = Phase Voltage $V_L = V_P$

$$\begin{split} &I_L = I \; Line = Line \; Current \\ &I_P = I \; Phase = Phase \; Current \\ &I_L = I_P \; x \; 1.732 \\ &I_P = I_L \; / 1.732 \end{split}$$

Power = W =
$$\sqrt{3}$$
 x V_LI_L cos θ
= 3 I_p²R
= 3 V_pI_p cos θ

WYE

$$V_L = V$$
 Line = Source Voltage
 $V_P = V$ Phase = Phase Voltage
 $V_L = V_P \times 1.732$

$$\begin{split} I_L &= I \; Line = Line \; Current \\ I_P &= I \; Phase = Phase \; Current \\ I_L &= I_P \end{split}$$

Power = W =
$$\sqrt{3}$$
 x V_LI_L cos θ
= 3 I_p²R
= 3 V_pI_p cos θ

- Note 1 Use copper conductors for all problems, unless otherwise specified.
- **Note 2 -** One horse power is equal to 746 watts.
- Note 3 Power factor (P.F.) = $cos~\theta$ = R/Z, Z = Impedance.
- Note 4 Efficiency = Output/Input